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Abstract

In this paper we make an overview of s-step Conjugate Gradient and develop a
novel formulation for s-step BiConjugate Gradient Stabilized iterative method. Also,
we show how to add preconditioning to both of these s-step schemes. We explain their
relationship to the standard, block and communication-avoiding counterparts. Finally,
we explore their advantages, such as the availability of matrix-power kernel Akx and use
of block-dot products B = XTY that group individual dot products together, as well
as their drawbacks, such as the extra computational overhead and numerical stability
related to the use of monomial basis for Krylov subspace Ks = {r, Ar, ..., As−1r}. We
note that the mathematical techniques used in this paper can be applied to other
methods in sparse linear algebra and related fields, such as optimization.

1 Introduction

In this paper we are concerned with investigating iterative methods for the solution of
linear system

Ax = f (1)

where nonsingular coefficient matrix A ∈ Rn×n, right-hand-side (RHS) f and solution
x ∈ Rn. A comprehensive overview of standard iterative methods can be found in [1, 17].
In this brief study we will focus on two popular algorithms: (i) Conjugate Gradient (CG)
and (ii) BiConjugate Gradient Stabilized (BiCGStab) Krylov subspace iterative methods.
These algorithms are often used to solve linear systems with symmetric positive definite
(SPD) and nonsymmetric coefficient matrices, respectively.
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The CG and BiCGStab methods have already been generalized to their block counter-
parts in [11, 15]. The block methods work with s vectors simultaneously and were originally
designed to solve linear systems with multiple RHS, such as

AX = F (2)

where multiple RHS and solutions are column vectors in tall matrices F and X ∈ Rn×s,
respectively. However, they can be adapted to solve systems with a single RHS, by for
example randomly selecting the remaining s − 1 RHS [14]. In the latter case, the block
methods often perform less iterations than their standard counterparts, but they do not
compute exactly the same solution in i iterations as the standard methods in i×s iterations.

The s-step methods occupy a middle ground between their standard and block coun-
terparts. They are usually applied to linear systems with a single RHS, they work with s
vectors simultaneously, but they are also designed to produce identical solution in i iter-
ations as the standard methods in i× s iterations, when the computation is performed in
exact arithmetic. In fact, the s-step methods can be viewed as an unrolling of s iterations
and a clever re-grouping of recurrence terms in them.

The s-step methods were first investigated by J. Van Rosendale, A. T. Chronopoulos
and C. W. Gear in [4, 6, 16], where the authors proposed s-step CG algorithm for SPD
linear systems. Subsequent work by A. T. Chronopoulos and C. D. Swanson in [5, 7] lead
to the development of s-step methods, such as GMRES and Orthomin, but not BiCGStab,
for nonsymmetric linear systems. These methods were further improved and generalized
to the solution of eigenvalue problems using Lanczos and Arnoldi iterations in [8, 9].

There are several advantages for using s-step methods. The first advantage is that the
matrix-vector multiplications used to build the Krylov subspace Ks = {r, Ar, ..., As−1r}
can be performed together, one immediately after another. This allows us to develop a
more efficient matrix-vector multiplication, using a pipeline where the results from current
multiplication are immediately forwarded as inputs to the next. The second advantage is
that the dot products spread across multiple iterations are bundled together. This allows
us to minimize fan-in communication that is associated with dot-products and often limits
scalability of parallel platforms.

There are also some disadvantages for using s-step methods. We perform more work
per 1 iteration of an s-step method than per s iterations of a standard method. The extra
work is often the result of one extra matrix-vector multiplication required to recompute
the residual. Also, notice that in practice the vectors computed by matrix-power kernel
Akx for k = 0, ..., s− 1 quickly become linearly dependent. Therefore, s-step methods can
suffer from issues related to numerical stability resulting from the use of a monomial basis
for the Krylov subspace corresponding to s internal iterations.

In this paper we first make an overview of how to use properties of the directions and
residual vectors in standard CG to build the s-step CG iterative method. Then, we find
the properties of the directions and residual vectors in standard BiCGStab. Finally, we use
this information in conjuction with recurrence relationships for these vectors to develop
a novel s-step BiCGStab iterative method. We also show how to add preconditioning to
both of these s-step schemes.
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Finally, we point out that s-step iterative methods are closely related to communication-
avoiding algorithms proposed in [2, 3, 10, 12]. In fact, the main differences between these
methods lie in (i) a different basis used by the communication-avoiding algorithms to
address numerical stability, and (ii) an efficient (communication-avoiding) implementation
of matrix-power kernel Akx as well as distributed dense linear algebra operations, such as
dense QR-factorization used in GMRES [18].

Let us now show how to derive the well known s-step CG and novel s-step BiCGStab
iterative methods as well as how to add preconditioning to both algorithms.

2 S-Step Conjugate Gradient (CG)

The standard CG method is shown in Alg. 1.

Algorithm 1 Standard CG

1: Let A ∈ Rn×n be a SPD matrix and x0 be an initial guess.
2: Compute r0 = f−Ax0

3: for i = 0, 1, ...until convergence do
4: if i == 0 then . Find directions p
5: Set pi = ri
6: else
7: Compute βi =

rTi ri
rTi−1ri−1

. Dot-product

8: Compute pi = ri + βipi−1

9: end if
10: Compute qi = Api . Matrix-vector multiply

11: Compute αi =
rTi ri
rTi qi

. Dot-product

12: Compute xi+1 = xi + αipi
13: Compute ri+1 = ri − αiqi
14: if ||ri+1||2/||r0||2 ≤ tol then stop end . Check Convergence
15: end for

Let us now prove that the directions pi and residuals ri computed by CG satisfy a few
properties. These properties will subsequently be used to setup the s-step CG method.

Lemma 1. The residuals ri are orthogonal and directions pi are A-orthogonal

rTi rj = 0 and pTi Apj = 0 for i 6= j (3)

Proof. See Proposition 6.13 in [17].

Theorem 1. The current residual ri and all previous direction pj are orthogonal

rTi pj = 0 for i > j (4)
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Proof. Using induction. Notice that for the base case i = 1 we have

rT1 p0 = rT1 r0 = 0 (5)

For the induction step, let us assume rTi pj−1 = 0. Then

rTi pj = rTi (rj + βj−1pj−1) = βj−1r
T
i pj−1 = 0 (6)

Let us now derive an alternative expression for scalars αi and βi.

Corollary 1. The scalars αi and βi satisfy

(pTi Api)αi = pTi ri (7)

(pTi Api)βi = −pTi Ari+1 (8)

Proof. Using Lemma 1 and Theorem 1 we have

rTi ri+1 = rTi (ri − αiApi) = (pi − βi−1pi−1)T ri − αi(pi − βi−1pi−1)TApi

= pTi ri − αipTi Api = 0 (9)

and

pTi Api+1 = pTi A(ri+1 + βiApi) = pTi Ari+1 + βip
T
i Api = 0 (10)

Let us now assume that we have s directions pi available at once, then we can write

xi+s = xi + αipi + ...+ αi+s−1pi+s−1 = xi + Piai (11)

where Pi = [pi, ...,pi+s−1] ∈ Rn×s is a tall matrix and ai = [αi, ..., αi+s−1]T ∈ Rs is a small
vector. Consequently, residual can be expressed as

ri+s = f−Axi+s = ri −APiai (12)

Also, let us assume that we have the monomial basis for Krylov subspace for s iterations

Ri = [ri, Ari, ..., A
s−1ri] (13)

Then, following the standard CG algorithm, it would be natural to express the next direc-
tions as a combination of previous directions and the basis vectors

Pi+1 = Ri+1 + PiBi (14)

where Bi = [βi,j ] ∈ Rs×s is a small matrix. At this point we have almost all the building
blocks of s-step CG method, but we are still missing a way to find scalars α and β stored in
the vector ai and matrix Bi. These coefficients can be found using the following Corollary.
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Corollary 2. The vector aTi = [αi, ..., αi+s−1] and matrix Bi = [βi,j ] satisfy

(P Ti APi)ai = P Ti ri (15)

(P Ti APi)Bi = −P Ti ARi+1 (16)

Proof. Enforcing orthogonality of residual and search directions in Theorem 1 we have

P Ti ri+s = P Ti (ri −APiai) = P Ti ri − (P Ti APi)ai = 0 (17)

Also, enforcing A-orthogonality between search directions in Lemma 1 we obtain

P Ti APi+1 = P Ti A(Ri+1 + PiBi) = P Ti ARi+1 + (P Ti APi)Bi = 0 (18)

Notice the similarity between Corollary 1 and 2 for standard and s-step CG, respectively.
Finally, putting all the equations (11) - (16) together we obtain the pseudo-code for

s-step CG iterative method, shown in Alg. 2.

Algorithm 2 S-Step CG

1: Let A ∈ Rn×n be a SPD matrix and x0 be an initial guess.
2: Compute r0 = f−Ax0 and let index k = is (initially k = 0)
3: for i = 0, 1, ...until convergence do
4: Compute T = [rk, Ark, ..., A

srk] . Matrix-power kernel
5: Let Ri = [rk, Ark, ..., A

s−1rk] . Extract R = T (:, 1 : s− 1) from T
6: Let Qi = [Ark, A

2rk, ..., A
srk] = ARi . Extract Q = T (:, 2 : s) from T

7: if i == 0 then . Find directions p
8: Set Pi = Ri
9: else

10: Compute Ci = −QTi Pi−1 . Block dot-products
11: Solve Wi−1Bi = Ci . Find scalars β
12: Compute Pi = Ri + PiBi
13: end if
14: Compute Wi = QTi Pi . Block dot-products
15: Compute gi = P Ti ri
16: Solve Wiai = gi . Find scalars α
17: Compute xk+s = xk + Piai . Compute new approximation xk
18: Compute rk+s = f−Axk+s . Recompute residual rk
19: if ||rk+s||2/||r0||2 ≤ tol then stop end . Check Convergence
20: end for
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Let us now introduce preconditioning into the s-step CG in a manner similar to the
standard algorithm. Let the preconditioned linear system be

(L−1AL−T )(LTx) = L−1f (19)

Then, we can apply the s-step on the preconditioned system (19) and re-factor recur-
rences in terms of preconditioner M = LLT . If we express everything in terms of “precon-
ditioned” directions M−1Pi and work with the original solution vector xi we obtain the
preconditioned s-step CG method, shown in Alg. 3.

Notice that tall matrices Zi and Qi on lines 6 and 7 can be constructed during the
computation of T on line 5 in Alg. 3. The key observation is that the computation of T
proceeds in the following fashion

ri,M
−1ri, (AM

−1)ri,M
−1(AM−1)ri, (AM

−1)2ri, ...,M
−1(AM−1)s−1ri, (AM

−1)sri

and therefore alternating odd and even terms define columns of tall matrices Zi and Qi.

Algorithm 3 Preconditioned S-Step CG

1: Let A ∈ Rn×n be a SPD matrix and x0 be an initial guess.
2: Let M = LLT be SPD preconditioner, so that M−1 ≈ A−1.
3: Compute r0 = f−Ax0, r̂0 = M−1r0 and let index k = is (initially k = 0)
4: for i = 0, 1, ...until convergence do
5: Compute T = M−1[rk, Ârk, ..., Â

srk] . Matrix-power kernel
6: Let Zi = M−1[rk, Ârk, ..., Â

s−1rk] = M−1Ri . Build Z & Q during
7: Let Qi = [Ârk, Â

2rk, ..., Â
srk] = AZi . computation of T

8: where auxiliary Â = AM−1 and Ri = [rk, Ârk, ..., Â
s−1rk]

9: if i == 0 then . Find directions p
10: Set Pi = Zi
11: else
12: Compute Ci = −QTi Pi−1 . Block dot-products
13: Solve Wi−1Bi = Ci . Find scalars β
14: Compute Pi = Zi + PiBi
15: end if
16: Compute Wi = QTi Pi . Block dot-products
17: Compute gi = P Ti ri
18: Solve Wiai = gi . Find scalars α
19: Compute xk+s = xk + Piai . Compute new approximation xk
20: Compute rk+s = f−Axk+s . Recompute residual rk
21: Compute r̂k+s = M−1rk+s

22: if ||rk+s||2/||r0||2 ≤ tol then stop end . Check Convergence
23: end for
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Finally, notice that preconditioned s-step CG performs an extra matrix-vector multi-
plication with A and preconditioner solve with M−1 per 1 iteration, when compared with
s iterations of the standard preconditioned CG method. The extra work happens during
re-computation of residual at the end of every s-step iteration.

3 S-Step BiConjugate Gradient Stabilized (BiCGStab)

Let us now focus on the s-step BiCGStab method, which has not been previously derived
by A. T. Chronopoulos et al. The standard BiCGStab is given in Alg 4.

Algorithm 4 Standard BiCGStab

1: Let A ∈ Rn×n be a nonsingular matrix and x0 be an initial guess.
2: Compute r0 = f−Ax0 and set p0 = r0

3: Let ř0 be arbitrary (for example ř0 = r0)
4: for i = 0, 1, ...until convergence do
5: Compute zi = Api . Matrix-vector multiply

6: Compute αi =
řT0 ri
řT0 zi

. Dot-product

7: Compute si = ri − αizi . Find directions s
8: if ||si||2/||r0||2 ≤ tol then set xi+1 = xi + αipi and stop end . Early exit
9: Compute vi = Asi . Matrix-vector multiply

10: Compute ωi =
sTi vi

vT
i vi

. Dot-product

11: Compute xi+1 = xi + αipi + ωisi
12: Compute ri+1 = si − ωivi
13: if ||ri+1||2/||r0||2 ≤ tol or early exit then stop end . Check Convergence

14: Compute βi =
(
řT0 ri+1

řT0 ri

)(
αi
ωi

)
15: Compute pi+1 = ri+1 + βi(pi − ωizi) . Find directions p
16: end for

Recall that the directions pi and residuals ri in BiCGStab have been derived from
BiCG method using polynomial recurrences to avoid multiplication with transpose of the
coefficient matrix AT [17]. The properties of directions and residuals in BiCG method
are well known and can be easily used to setup the corresponding s-step method. The
relationships between them in BiCGStab are far less clear. Therefore, the first step is to
understand the properties of directions si, pi and residuals ri, ř0 in BiCGStab method.

Theorem 2. The directions si, pi and residuals ri, ř0 satisfy the following relationships

řT0 si = 0 (20)

rTi+1Asi = 0 (21)

řT0 (pi+1 − βipi) = 0 (22)
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Proof. First relationship (20) follows from

řT0 si = řT0 (ri − αiApi) = řT0 ri − αiřT0 Api = řT0 ri − řT0 ri = 0 (23)

Second relationship (21) follows from

rTi+1Asi = (si − ωiAsi)TAsi = sTi Asi − ωi(Asi)T (Asi) = sTi Asi − sTi Asi = 0 (24)

The last relationship (22) follows from

řT0 (pi+1 − βipi) = řT0 (ri+1 − βiωiApi) = (25)

= řT0 ri+1 −
(
řT0 ri+1

řT0 Api

)
řT0 Api = 0 (26)

Notice that we can express the recurrences of BiCGStab in the following convenient form

si = ri − αiApi (27)

ri+1 = (I − ωiA)si (28)

qi = (I − ωiA)pi (29)

pi+1 = ri+1 + βiqi (30)

Corollary 3. Let auxiliary vector yi = si + βipi, then directions pi+1 = (I − ωiA)yi and

řT0 Ayi = 0 (31)

as long as ωi 6= 0.

Proof. Notice that using recurrences (28), (29) and (30) we have

pi+1 = ri+1 + βiqi = (I − ωiA)si + βi(I − ωiA)pi = (I − ωiA)(si + βipi) (32)

and using first and last relationships in Theorem 2 we have

řT0 A(si + βipi) = − 1

ωi
řT0 A(−ωisi − βiωipi) = − 1

ωi
řT0 (si − ωiAsi − βiωiApi)

= − 1

ωi
řT0 (ri+1 − βiωiApi) = − 1

ωi
řT0 (pi+1 − βipi) = 0 (33)

These properties are interesting by themselves, but it is difficult to rely only on them
to setup a linear system for finding scalars α, ω and β similarly to CG and BiCG methods
because they involve a single vector corresponding to the shadow residual ř0, rather than all
directions p in CG or shadow directions p̌ in BiCG. Therefore, we have to find additional
conditions and a different way of setting up the s-step method.
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Let us now assume that we have s directions pi and si available at once, then we have

xi+s = xi + αipi + ...+ αi+s−1pi+s−1 + ωisi + ...+ ωi+s−1si+s−1

= xi + Piai + Sioi (34)

where Pi = [pi, ...,pi+s−1] and Si = [si, ..., si+s−1] ∈ Rn×s are tall matrices and ai =
[αi, ..., αi+s−1]T and oi = [ωi, ..., ωi+s−1]T ∈ Rs are small vectors. Consequently, residual
can be expressed as

ri+s = f−Axi+s = ri −A(Piai + Sioi) (35)

Also, let us assume that we have the monomial basis for Krylov subspace for s iterations

Ri = [ri, Ari, ..., A
2(s−1)ri] (36)

and monomial basis for directions

Pi = [pi, Api, ..., A
2(s−1)pi] (37)

Notice that using recurrences (27) - (30) we can write the following

[si, Asi,qi, Aqi] =
[
ri, Ari, A

2ri,pi, Api, A
2pi
]
C (38)[

ri+1,pi+1

]
= [si, Asi,qi, Aqi]D (39)

where transitional matrices of scalar coefficients C and D are

C = C(1)C(2) =



1
1

0
1 0

−αi 1 0
−αi 1




1

1
1

−ωi 1
−ωi



=



1
1

0
1 0

−αi −ωi 1
−αi −ωi

 (40)

and

D = D(1)D(2) =


1

−ωi 0
1 0

1


 1 1

βi
0

 =


1 1

−ωi −ωi
βi
0

 (41)
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Also, note that for B = CD and k ≥ 0 we have

Ak[ri+1,pi+1] = Ak[ri, Ari, A
2ri,pi, Api, A

2pi]B (42)

Therefore, letting Bi ∈ R4s−2×4s−6 follow the same pattern as B we have

[ri+1, ..., A
2(s−2)ri+1,pi+1, ..., A

2(s−2)pi+1] = [ri, ..., A
2(s−1)ri,pi, ..., A

2(s−1)pi]Bi (43)

and consequently

[ri+s−1,pi+s−1] = [ri, ..., A
2(s−1)ri,pi, ..., A

2(s−1)pi]Bi...Bi+s−2 (44)

Hence, we can use (44) to build directions si, pi and residuals ri after s− 1 iterations, as
long as we are able to compute the scalars α, ω and β used in transitional matrices.

Let us now compute the matrix W ∈ R4s−2×4s−2 and vector w ∈ R4s−2 such that

Wi = [Ri, Pi]
T [Ri, Pi] (45)

wT
i = řT0 [Ri, Pi] = [gTi ,h

T
i ] (46)

and let Wi(j, k) denote j-th row and k-th column element of matrix Wi, while wi(j) denotes
the j-th element of vector wi. Also, let us use 1-based indexing.

Then,

αi =
řT0 ri

řT0 Api
=

gi(1)

hi(2)
(47)

Further, after updating

W
′
i = C

(1)
i

T
WiC

(1)
i (48)

we have

ωi =
sTi Asi

(Asi)T (Asi)
=
W
′
i (1, 2)

W
′
i (2, 2)

(49)

and, after updating

w
′
i = (CiD

(1)
i )Twi (50)

we obtain

βi =

(
řT0 ri+1

řT0 ri

)(
αi
ωi

)
=

(
w
′
i(1)

gi(1)

)(
αi
ωi

)
(51)

Finally,

Wi+1 = (C
(2)
i Di)

TW
′
i (C

(2)
i Di) = BT

i WiBi (52)

and

wi+1 = D
(2)
i

T
w
′
i = BT

i wi (53)

Finally, putting all the equations (34) - (53) together we obtain the pseudo-code for
s-step BiCGStab iterative method, shown in Alg. 5.
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Algorithm 5 S-Step BiCGStab

1: Let A ∈ Rn×n be a nonsingular coefficient matrix and let x0 be an initial guess.
2: Compute r0 = f−Ax0 and set p0 = r0

3: Let ř0 be arbitrary (for example ř0 = r0) and let index k = is+ j (initially k = 0)
4: for i = 0, 1, ...until convergence do
5: Compute T = [[rk,pk], A[rk,pk], ..., A

2s[rk,pk]] . Matrix-power kernel
6: Let Ri = [rk, Ark, ..., A

2srk] = [R̃i, A
2srk] . Extract R from T

7: Let Pi = [pk, Apk, ..., A
2spk] = [P̃i, A

2spk] = [pk, P̄i] . Extract P from T
8: Compute Wi = [Ri, Pi]

T [Ri, Pi] . Block dot-products
9: Compute wT

i = řT0 [Ri, Pi] = [gTi ,h
T
i ]

10: Let .̃ and .̄ indicate all but last and first elements of ., as shown for Ri and Pi
11: for j = 0, ..., s− 1 do

12: Set αk = gk(1)
hk(2) and store ai(j) = αk . Note αk =

řT0 rk
řT0 Apk

13: Compute Sk = R̃k − αkP̄k . Sk = [sk, Ask, ..., A
2(s−j)−1sk]

14: Update W
′
k = C

(1)
k

T
WkC

(1)
k . Using sk = rk − αkApk

15: if
√
W
′
k(1, 1)/||r0||2 ≤ tol then break end . Check ||sk||22 for early exit

16: Set ωk =
W
′
k(1,2)

W
′
k(2,2)

and store oi(j) = ωk . Note ωk =
sTkAsk

(Ask)T (Ask)

17: Compute Qk = P̃k − ωkP̄k . Qk = [qk, Aqk, ..., A
2(s−j)−1qk]

18: if (j == s− 1) then break; . Check for last iteration
19: Compute Rk+1 = S̃k − ωkS̄k . Rk+1 = [rk+1, .., A

2(s−j)−2rk+1]

20: Update w
′
k = (CkD

(1)
k )Twk . Using rk+1 = sk − ωkAsk

21: Set βk =

(
w
′
k(1)

gk(1)

)(
αk
ωk

)
. Note βk =

(
řT0 rk+1

řT0 rk

)(
αk
ωk

)
22: Compute Pk+1 = Rk+1 + βkQ̃k . Pk+1 = [pk+1, .., A

2(s−j)−2pk+1]
23: Update Wk+1 = BT

kWkBk . Using pk+1 = rk+1 + βkqk
24: Update wk+1 = BT

k wk

25: end for
26: Let Pi = [pi, ...,pk−1] and Si = [si, ..., sk−1] have the constructed directions
27: Compute xi+s = xi + Piai + Sioi . Do not use last sk−1 if early exit
28: Compute ri+s = f−Axi+s . Note k = is+ s− 1 unless early exit
29: if ||ri+s||2/||r0||2 ≤ tol or early exit then stop end . Check Convergence

30: Compute βk =
(
řT0 ri+s

gk(1)

)(
ai(s−1)
oi(s−1)

)
. Note αk = ai(s− 1) and ωk = oi(s− 1)

31: Compute pi+s = ri+s + βkqk
32: end for
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It is worthwhile to mention again that updates using transitional matrices of scalar
coefficients Bi = CiDi can be expressed in terms of recurrences. In fact notice that matrices
C(1), C(2), D(1), D(2) in equations (40) - (41) have one-to-one correspondence to recurrences
in equations (27) - (30). We use a mix of transitional matrices and recurrences for clarity in
the pseudo-code. However, we point out that latter allows for more efficient implementation
of the algorithm in practice.

Also, notice that at each inner iteration the size of tall matrices Ri and Pi as well
as small square matrix Wi and vector wi is reduced by 4 elements (columns for Ri and
Pi, rows/columns for Wi and vector elements for wi). These 4 elements correspond to two
extra powers of A and A2 applied to residual r and directions p. Consequently, the updates
can be done in-place preserving all previously computed residuals and directions without
requiring extra memory storage for them.

Let us now introduce preconditioning into the s-step BiCGStab in a manner similar to
the standard algorithm. Let the preconditioned linear system be

(AM−1)(Mx) = f (54)

Then, we can apply the s-step on the preconditioned system (54) and re-factor recur-
rences in terms of preconditioner M = LU . If we express everything in terms of “precon-
ditioned” directions M−1Pi and M−1Si and work with the original solution vector xi we
obtain the preconditioned s-step BiCGStab method, shown in Alg. 6.

Notice that tall matrices Ri, Pi, Vi and Zi on lines 7 − 10 can be constructed during
the computation of T on line 6 in Alg. 6. The key observation is that the computation of
T proceeds in the following fashion

[ri,pi], M−1[ri,pi],

(AM−1)[ri,pi], M−1(AM−1)[ri,pi],

...

(AM−1)2s−1[ri,pi],M
−1(AM−1)2s−1[ri,pi],

(AM−1)2s[ri,pi] (55)

and therefore terms in first and second column define tall matrices Ri, Pi, Vi and Zi.
It is important to point out that in preconditioned s-step BiCGStab we carry both Ri,

Pi and Vi, Zi through inner s− 1 iterations. The latter pair is needed to compute original
xi+s on line 30 and then residual ri+s on line 31, while the former pair is needed to compute
direction pk on line 35 in Alg. 6. Both residual rk and direction pk are needed to compute
T in the next outer iteration. Notice that this is different from preconditioned s-step CG,
where only preconditioned residual rk is needed for the next outer iteration.

Finally, notice that preconditioned s-step BiCGStab performs an extra matrix-vector
multiplication with A and preconditioner solve with M−1 per 1 iteration, when compared
with s iterations of the standard preconditioned BiCGStab method. The extra work hap-
pens during re-computation of residual at the end of every s-step iteration.
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Algorithm 6 Preconditioned S-Step BiCGStab

1: Let A ∈ Rn×n be a nonsingular coefficient matrix and let x0 be an initial guess.
2: Let M = LU be the preconditioner, so that M−1 ≈ A−1.
3: Compute r0 = f−Ax0 and set p0 = r0

4: Let ř0 be arbitrary (for example ř0 = r0) and let index k = is+ j (initially k = 0)
5: for i = 0, 1, ...until convergence do
6: Compute T = [[rk,pk], Â[rk,pk], ..., Â

2s[rk,pk]] with Â = AM−1 . Matrix-power kernel
7: Let Ri = [rk, Ârk, ..., Â

2srk] = [R̃i, Â
2srk] . Build R, P , V and Z

8: Let Pi = [pk, Âpk, ..., Â
2spk] = [P̃i, Â

2spk] = [pk, P̄i] . during comput. of T
9: Let Vi = M−1[rk, Ârk, ..., Â

2s−1rk] = M−1R̃i
10: Let Zi = M−1[pk, Âpk, ..., Â

2s−1pk] = M−1P̃i
11: Compute Wi = [Ri, Pi]

T [Ri, Pi] . Block dot-products
12: Compute wT

i = řT0 [Vi, Zi] = [gTi ,h
T
i ]

13: Let .̃ and .̄ indicate all but last and first elements of ., as shown for Ri and Pi
14: for j = 0, ..., s− 1 do

15: Set αk = gk(1)
hk(2) and store ai(j) = αk . Note αk =

řT0 rk
řT0 Apk

16: Compute [Sk, S
′
k] = [R̃k, Ṽk]− αk[P̄k, Z̄k] . Sk = [sk, Ask, ..., A

2(s−j)−1sk]

17: Update W
′
k = C

(1)
k

T
WkC

(1)
k . Using sk = rk − αkApk

18: if
√
W
′
k(1, 1)/||r0||2 ≤ tol then break end . Check ||sk||22 for early exit

19: Set ωk =
W
′
k(1,2)

W
′
k(2,2)

and store oi(j) = ωk . Note ωk =
sTkAsk

(Ask)T (Ask)

20: Compute [Qk, Q
′
k] = [P̃k, Z̃k]− ωk[P̄k, Z̄k] . Qk = [qk, Aqk, ..., A

2(s−j)−1qk]
21: if (j == s− 1) then break; . Check for last iteration
22: Compute [Rk+1, Vk+1] = [S̃k, S̃

′
k]− ωk[S̄k, S̄′k] . Rk+1 = [rk+1, .., A

2(s−j)−2rk+1]

23: Update w
′
k = (CkD

(1)
k )Twk . Using rk+1 = sk − ωkAsk

24: Set βk =

(
w
′
k(1)

gk(1)

)(
αk
ωk

)
. Note βk =

(
řT0 rk+1

řT0 rk

)(
αk
ωk

)
25: Compute [Pk+1, Zk+1] = [Rk+1, Vk+1] + βk[Q̃k, Q̃

′
k] . Pk+1 = [pk+1, .., A

2(s−j)−2pk+1]
26: Update Wk+1 = BT

kWkBk . Using pk+1 = rk+1 + βkqk
27: Update wk+1 = BT

k wk

28: end for
29: Let Zi = M−1[pi, ...,pk−1] and S′i = M−1[si, ..., sk−1] have the constructed directions
30: Compute xi+s = xi + Ziai + S′ioi . Do not use last sk−1 if early exit
31: Compute ri+s = f−Axi+s . Note k = is+ s− 1 unless early exit
32: if ||ri+s||2/||r0||2 ≤ tol or early exit then stop end . Check Convergence
33: Compute r′i+s = M−1ri+s

34: Compute βk =

(
řT0 r′i+s

gk(1)

)(
ai(s−1)
oi(s−1)

)
. Note αk = ai(s− 1) and ωk = oi(s− 1)

35: Compute p̂i+s = r̂i+s + βkqk
36: end for
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4 Numerical Experiments

In this section we study the numerical behavior of the preconditioned s-step CG and
BiCGStab iterative methods. In order to facilitate comparisons, we use the same matrices
as previous investigations of their standard and block counterparts [13, 14]. The seven
SPD and five nonsymmetric matrices from UFSMC [19] with the respective number of
rows (m), columns (n=m) and non-zero elements (nnz) are grouped and shown according
to their increasing order in Tab. 1.

We compare the s-step iterative methods using a reference MATLAB implementation.
We let the initial guess be zero and the RHS f = Ae where e = (1, . . . , 1)T . Also, unless
stated otherwise we let the stopping criteria be the maximum number of iterations 40 or
relative residual ||ri||2/||r0||2 < 10−2, where ri = f − Axi is the residual at i-th iteration.
These modest stopping criteria allow us to illustrate the behavior of the algorithms without
being significantly affected by the accumulation of floating point errors through iterations,
which is addressed later on separately with different stopping criteria that match previous
studies [13, 14].

# Matrix m,n nnz SPD Application

1. offshore 259,789 4,242,673 yes Geophysics
2. af shell3 504,855 17,562,051 yes Mechanics
3. parabolic fem 525,825 3,674,625 yes General
4. apache2 715,176 4,817,870 yes Mechanics
5. ecology2 999,999 4,995,991 yes Biology
6. thermal2 1,228,045 8,580,313 yes Thermal Simulation
7. G3 circuit 1,585,478 7,660,826 yes Circuit Simulation
8. FEM 3D thermal2 147,900 3,489,300 no Mechanics
9. thermomech dK 204,316 2,846,228 no Mechanics
10. ASIC 320ks 321,671 1,316,085 no Circuit Simulation
11. cage13 445,315 7,479,343 no Biology
12. atmosmodd 1,270,432 8,814,880 no Atmospheric Model.

Table 1: Symmetric positive definite (SPD) and nonsymmetric test matrices

First, let us illustrate that s-step iterative methods indeed produce the same approxima-
tion to the solution xi after i iterations as their standard counterparts after i×s iterations.
Notice that when we plot ||ri||2 through iterations for standard scheme in a grey line and
for s-step scheme with s = 1 in blue circle, s = 2 in green star and s = 4 in orange diamond,
these markings lie on the same curve and coincide in strides of s iterations, as can be seen
in Fig. 1 and 2. The only difference might happen in the last iteration where standard
schemes can stop at an arbitrary iteration number, while s-step schemes must proceed to
the next multiple of s. This indicates that both un- and preconditioned s-step CG and
BiCGStab indeed produce the same solution xi as standard iterative methods.
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Figure 1: Plot of convergence of standard and s-step CG for s = 1, 2, 4 on af shell3 matrix
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(a) BiConjugate Gradient Stabilized (BiCGStab)
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(b) Preconditioned BiCGStab

Figure 2: Plot of convergence of standard and s-step BiCGStab for s = 1, 2, 4 on atmosmmodd matrix

Second, let us make an important observation about numerical stability of s-step meth-
ods. As we have mentioned earlier, the vectors in the monomial basis of the Krylov subspace
used in s-step methods can become linearly dependent relatively quickly. In fact, if we plot
||ri||2 through iterations for s = 8 in red square, we can easily identify several occasions
where these markings do not coincide with the grey line used for the standard scheme, see
Fig. 3 and 4. Notice that in the case of s-step CG on Fig. 3 (a) the s-step method di-
verged, while in the case of s-step BiCGStab on Fig 4 (a) the method exited early, because
intermediate value ||s||2 fell below a specified threshold. This behavior is in line with the
observations made in [6] that for s > 5 s-step CG may suffer from loss of orthogonality and
that preconditioned s-step CG would likely fair better than its unpreconditioned version.

Third, let us look at the convergence of the preconditioned s-step iterative method
for different stopping criteria. In particular, we are interested in what happens when we
ask the algorithm to achieve a tighter tolerance ||ri||2/||r0||2 < 10−7 and allow a larger
maximum number of iterations. Notice that the residuals computed by the s-step methods
always start following the ones computed by standard algorithms, see Fig 5 and 6. In some
cases, the s-step methods match their standard counterparts exactly until the solution is
found, as shown for offshore matrix on Fig. 5 (a). In other cases, they follow the residuals
approximately, while still finding the solution towards the end, as shown for atmosmodd
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Figure 3: Plot of convergence of standard and s-step CG for s = 8 on af shell3 matrix
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Figure 4: Plot of convergence of standard and s-step BiCGStab for s = 8 on atmosmmodd matrix

matrix on Fig. 5 (b). However, there are also cases where the residuals computed by
standard and s-step methods initially coincide, but the latter diverge from the solution
towards the end, as shown for matrices af shell3 and apache2 on Fig. 6.

These empirical results lead us to conclude that s-step methods are often better suited
for linear systems, where we are looking for an approximate solution with a relatively
relaxed tolerance, such as 10−2, and expect to find it in modest number of iterations, for
example < 80 iterations. Also, we recall that s ≤ 5 is recommended for most cases.

Finally, reverting to using our original stopping criteria that were stated on page 14,
we plot − log ||ri||2||r0||2 obtained by the preconditioned standard and s-step methods for all the
matrices on Fig. 7. Notice that because we plot the negative of the log, the higher is the
value on the plot in Fig. 7, the lower is the relative residual.

Notice that for most matrices the value of the relative residual across all schemes is
either the same or slightly better for s-step schemes, because the latter stop at iteration
number that is multiple of s, which might be slightly higher than the iteration at which
the standard algorithm has stopped. There are also a few cases, such as thermomech dK
corresponding to matrix 9, where the relative residual for s-step method with s = 8 is
worse, due to loss of orthogonality of the vectors in the monomial basis.
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Figure 5: Plot of convergence of preconditioned methods for tighter tolerance ||ri||2/||r0||2 < 10−7
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Figure 6: Plot of convergence of preconditioned methods for tighter tolerance ||ri||2/||r0||2 < 10−7
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The detailed results of the numerical experiments are shown in Tab. 2 and 3.

Standard s-step (s=1) s-step (s=2) s-step (s=4) s-step (s=8)

# # it.
||ri||2
||r0||2 # it.

||ri||2
||r0||2 # it.

||ri||2
||r0||2 # it.

||ri||2
||r0||2 # it.

||ri||2
||r0||2

1. 15 9.18E-03 15 9.18E-03 8 8.35E-03 4 8.35E-03 2 8.35E-03
2. 27 9.97E-03 27 9.96E-03 14 9.14E-03 7 9.13E-03 5 6.38E+06
3. 40 4.03E+00 40 4.03E+00 20 4.03E+00 10 4.03E+00 5 4.03E+00
4. 40 1.97E-01 40 1.97E-01 20 1.20E+06 10 1.51E+12 5 8.54E+04
5. 40 1.38E-01 40 1.38E-01 20 1.38E-01 10 1.38E-01 5 1.38E-01
6. 40 2.46E-02 40 2.46E-02 20 2.46E-02 10 2.46E-02 5 2.46E-02
7. 1 1.70E-03 1 1.70E-03 1 1.57E-03 1 1.37E-03 1 7.54E-04
8. 25.5 9.70E-03 26 9.70E-03 13 9.70E-03 7 9.70E-03 1 1.09E-01
9. 40 2.21E-01 40 1.79E-01 20 1.96E-01 1 1.78E-01 5 NaN
10. 40 1.16E-02 40 3.47E-02 20 1.91E-02 1 1.69E-01 1 1.69E-01
11. 1.5 2.67E-03 2 2.67E-03 1 2.67E-03 1 2.67E-03 1 2.67E-03
12. 39.5 9.89E-03 39 9.41E-03 20 1.10E-02 10 1.14E-02 3 2.14E-02

Table 2: Results for standard and s-step unpreconditioned CG and BiCGStab methods

Standard s-step (s=1) s-step (s=2) s-step (s=4) s-step (s=8)

# # it.
||ri||2
||r0||2 # it.

||ri||2
||r0||2 # it.

||ri||2
||r0||2 # it.

||ri||2
||r0||2 # it.

||ri||2
||r0||2

1. 2 2.12E-03 2 2.12E-03 1 2.12E-03 1 1.23E-05 1 1.07E-06
2. 6 9.38E-03 6 9.38E-03 3 9.38E-03 2 2.95E-03 1 2.95E-03
3. 40 6.04E-01 40 6.04E-01 20 6.04E-01 10 6.04E-01 5 6.04E-01
4. 40 1.51E-01 40 7.85E-01 20 7.85E-01 10 7.85E-01 5 7.85E-01
5. 40 1.83E-02 40 1.85E-02 20 1.85E-02 10 1.85E-02 5 1.85E-02
6. 40 1.03E-02 40 1.03E-02 20 1.03E-02 10 1.03E-02 5 1.03E-02
7. 1 1.90E-04 1 1.90E-04 1 1.03E-04 1 8.58E-05 1 2.93E-05
8. 1.5 1.29E-03 2 1.29E-03 1 1.29E-03 1 1.29E-03 1 1.29E-03
9. 30 1.26E-01 40 1.44E-01 20 1.44E-01 10 1.44E-01 1 2.86E-01
10. 0.5 5.63E-03 1 5.63E-03 1 5.63E-03 1 5.63E-03 1 5.63E-03
11. 1 6.01E-04 1 6.01E-04 1 1.92E-05 1 1.92E-05 1 1.92E-05
12. 11.5 9.87E-03 12 9.87E-03 6 9.87E-03 3 9.87E-03 2 9.04E-03

Table 3: Results for standard and s-step preconditioned CG and BiCGStab methods
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5 Conclusion

In this paper we made an overview of the existing s-step CG iterative method and developed
a novel s-step BiCGStab iterative method. We have also introduced preconditioning to both
s-step algorithms, maintaining the extra work performed at each s iterations to the extra
matrix-vector multiplication and a preconditioning solve.

We have discussed advantages of these methods, such as the use of matrix-power kernel
and block dot-products, as well as their disadvantages, such as the loss of orthogonality
of the monomial Krylov subspace basis and extra work performed per iteration. Also, we
have pointed out the connection between s-step and communication-avoiding algorithms.

Finally, we performed numerical experiments to validate the theory behind the s-step
methods, and will look at their performance in the future. These algorithms can potentially
be a better alternative to their standard counterparts when modest tolerance and number
of iterations are required to solve a linear system on parallel platforms. Also, they could be
used for a larger class of problems if the numerical stability issues related to the monomial
basis are resolved.
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